

Jair Arone Maués

Comparação de Fontes Primárias para Geração de Energia Elétrica no Brasil baseada em Conceito de Risco

Tese de Doutorado

Tese apresentada ao Programa de Pós-graduação em Engenharia Mecânica da PUC-Rio como requisito parcial para obtenção do título de Doutor em Ciências.

Orientadores: Prof. Eloi Fernández y Fernández

Eng. Antônio Cláudio de França Corrêa

Jair Arone Maués

Comparação de Fontes Primárias para Geração de Energia Elétrica no Brasil baseada em Conceito de Risco

Tese apresentada ao Programa de Pós-graduação em Engenharia Mecânica da PUC-Rio como requisito parcial para obtenção do título de Doutor em Ciências. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Eloi Fernández y Fernández

Orientador

Departamento de Engenharia Mecânica – PUC-Rio

Eng. Antônio Cláudio de França Corrêa

Co-orientador

Petróleo Brasileiro S.A - PETROBRAS

Prof. Pedro Carajilescov

Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas - UFABC

Prof. José Alberto dos Reis Parise

Departamento de Engenharia Mecânica – PUC-Rio

Eng. David Zylbersztajn

DZ Negócios com Energia

Prof. Ivan Camargo

Departamento de Engenharia Elétrica – UnB

Prof. José Cesário Cecchi

Agência Nacional do Petróleo, Gás Natural e Biocombustíveis

Prof. José Eugenio Leal

Coordenador Setorial do Centro Técnico Científico – PUC-Rio

Rio de Janeiro, 14 de novembro de 2008

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização do autor, do orientador e da universidade.

Jair Arone Maués

Graduou-se em Engenharia Mecânica e Nuclear na Pontifícia Universidade Católica do Rio de Janeiro em 1981. Trabalhou na Promon Engenharia, na área de Energia e Hidro, e na Schlumberger, antes de ingressar como engenheiro de equipamentos na Petrobras em 1986, na Divisão de Utilidades do Departamento Industrial, trabalhando posteriormente na Refinaria de Manaus e na Coordenadoria de Apoio ao CONPET, Programa de Conservação de Energia do governo implantado pela Petrobras. Antes de ocupar o cargo atual de coordenador de projetos da Gerência de Desenvolvimento especiais Energético da Diretoria de Gás e Energia, exerceu funções de coordenadoria na Gerência Geral de Distribuição de Gás Natural e foi o primeiro profissional Companhia responsável da pela Gerência de Energia Renovável.

Ficha Catalográfica

Maués, Jair Arone

Comparação de fontes primárias para geração de energia elétrica no Brasil baseada em conceito de risco / Jair Arone Maués ; orientadores: Eloi Fernández y Fernández, Antônio Cláudio de França Corrêa – 2008.

250f: il.; 30 cm

Tese (Doutorado em Engenharia Mecânica)— Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2008.

Inclui bibliografia

1. Engenharia mecânica - Teses. 2. Matriz elétrica. 3. Fontes de energia. 4. Riscos na geração elétrica. I. Fernández, Eloi Fernández y. II. Corrêa, França. Antônio Cláudio de III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Mecânica. IV. Título.

CDD: 621

Agradecimentos

Um Doutorado realizado em tempo parcial, atendendo a todas as obrigações em casa e no trabalho, só pode ser executado com a colaboração de muitas pessoas. Escolhi algumas para representá-las.

Iniciando pelo trabalho, a Petrobras incentiva seus empregados a buscar um contínuo aperfeiçoamento, mas isso também depende do apoio de seu chefe imediato. Por isso agradeço ao meu ex-chefe, Eng. Paulo Kazuo, gerente executivo da Área de Desenvolvimento Energético, a oportunidade e confiança em mim depositadas.

Aos orientadores Eloi e Antônio Cláudio, a sugestão do tema e constante orientação didática e acadêmica, sem a qual o desenvolvimento do estudo de um assunto tão vasto como energia e aproveitamento de fontes primárias perde o foco com muita facilidade.

A todos os participantes da banca examinadora e ao colega Guilherme Moreira, expresso aqui meus sinceros agradecimentos. Sinto-me honrado pela oportunidade de aperfeiçoar esse trabalho através da contribuição de cada um deles.

Ao Professor Simon Awerbuch, morto em trágico acidente de avião em fevereiro de 2007 junto com esposa e filho, presto minhas homenagens póstumas. Sua mente brilhante e enorme capacidade de comunicação foram fontes preciosas para que pudesse aplicar o modelo de portfólio para a matriz energética brasileira. Lastimo profundamente a falta de oportunidade de termos tido mais contatos e poder apresentar o resultado desse trabalho para ele.

Aos meus pais, tios e avó e bisavó, pelo amor e formação que deles recebi.

Por fim, as pessoas mais importantes nessa empreitada de quatro anos, minha esposa Miriam e filha Áurea. Foram muitas noites e fins de semana ocupados com estudos, durante os quais não pude dar a devida atenção a elas. Mas, pensando melhor, acho que esse agradecimento deva ser recíproco, pois acho que fui, modestamente, fonte de inspiração para as duas. Afinal de contas Dra. Miriam também iniciou e já está finalizando seu Doutoramento em Medicina e Dona Aurinha não se cansa de mostrar seu boletim de notas escolares, muito melhores do que a do papai.

Resumo

Maués, Jair Arone; Fernández, Eloi Fernández y; Corrêa, Antônio Cláudio de França. Comparação de Fontes Primárias para Geração de Energia Elétrica no Brasil baseada em Conceito de Risco. Rio de Janeiro, 2008. 250 p. Tese de Doutorado – Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

O trabalho compara sistemas de conversão de energia para geração de energia elétrica, com ênfase no caso brasileiro, levando-se em consideração todos os fatores relevantes envolvidos, em especial os riscos associados a cada um dos componentes do custo final da energia. Os modelos de custos usuais de engenharia tendem a favorecer a geração de energia tradicional em detrimento das renováveis alternativas, ao ignorar os riscos envolvidos, baseando-se apenas no menor preço do quilowatt-hora gerado. O modelo financeiro aplicado nesta comparação baseia-se na Teoria de Portfólios, desenvolvida por Harry Markowitz. Primeiramente são avaliados os resultados do binômio risco-retorno relacionados à matriz prevista pela EPE – Empresa de Pesquisa Energética no Plano Nacional de Energia – 2030, publicado em 2006. Posteriormente, as alternativas indicadas pelo modelo são comparadas. Os resultados mostraram que a matriz prevista pela EPE em 2030 não está otimizada do ponto de vista do binômio retorno-risco dos investimentos em geração elétrica. Os aumentos da participação das fontes renováveis não tradicionais à matriz, especificamente, resíduos das plantações de cana-de-açúcar e energia eólica, reduzem tanto o risco quanto o custo médio do quilowatt-hora gerado. Este resultado vale mesmo quando se variam os dados de entrada, notadamente os riscos associados aos custos de geração relacionados às diversas tecnologias consideradas, assim como os coeficientes de correlação entre elas. As participações dessas duas fontes renováveis na fronteira eficiente, tecnicamente viável, resultaram em portfólios bastante robustos, imunes às variações imputadas.

Palavras-chave

Matriz Elétrica, Fontes de Energia, Riscos na Geração Elétrica.

Abstract

Maués, Jair Arone; Fernández, Eloi Fernández y; Corrêa, Antônio Cláudio de França (Advisors). **Risk Analysis applied to select Primary Energy Sources for Power Generation in Brazil.** Rio de Janeiro, 2008. 250 p. PhD thesis – Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

The work compares current approaches for evaluating and planning Brazilian energy mixes for future power generation, based not only on energy cost components contribution to a portfolio, but on their contribution to portfolio risk, as well. Energy planners have traditionally used least-cost as a basis for generating capacity additions, understating the true value of non traditional renewable technologies for decreasing risk. This project applies widely accepted finance theory, Mean-Variance Portfolio Theory, developed by Harry Markowitz, to provide an economic basis for selecting alternative generating scenarios. First, Brazil's expected future generating mix for 2030 as predicted by Empresa de Pesquisa Energética in its 2030 Brazilian Power Planning, published in 2006, is evaluated. This mix is referred to as the reference EPE scenario. The risk-return properties of Brazil's expected EPE mix for the year 2030 is compared to other possible mixes on the projected efficient frontier. The model finds solutions that are superior to the EPE mix in that they reduce risk or cost or both, while including a greater share of wind and biomass from sugar cane in the mix. The basic findings of this analysis seem quite robust, and do not materially change the shape of the efficient frontier, where it is technically feasible, even when the risk parameter estimates and cost covariations are changed significantly in the sensitivity analysis.

Keywords

Electricity Generation Mix, Energy Sources, Risks in Power Generation.

Sumário

CAPÍTULO) I Introdução	18
CAPÍTULO	II Considerações Gerais	24
II.1 OFE	ERTA E DEMANDA DE ENERGIA	24
II.2 SUS	STENTABILIDADE DOS NÍVEIS ATUAIS E FUTUROS DE	
CONSU	MO DE ENERGIA	28
CAPÍTULO	III Caracterização das Principais Fontes Renováveis	34
III.1 ENE	ERGIA SOLAR	34
III.1.1	Conversão Fotovoltaica	36
III.2 ENE	ERGIA EÓLICA	44
III.2.1	Introdução	44
III.2.2	Tipos de Aerogeradores	46
III.2.3	Fabricantes de Aerogeradores	48
III.3 BIO	MASSA	50
III.3.1	Cana-de-açúcar	52
III.3	.1.1 Cogeração no Setor Sucro-Alcooleiro	53
III.3.2	Oleaginosas	56
CAPÍTULO) IV Novas Tecnologias	61
IV.1 CÉL	ULAS A COMBUSTÍVEL	61
IV.1.1	Conjunto reformador de gás - pilha de células a combustív	el 65
IV.2 ENE	ERGIA NUCLEAR DISTRIBUÍDA	69
IV.2.1	Breve Histórico da Energia Nuclear no Brasil	69
IV.2.2	Custos de Combustível Nuclear	72
IV.2.3	Custos da Geração Elétrica comparada a outras fontes	76
IV.3 GEF	RAÇÃO DISTRIBUÍDA E COGERAÇÃO	78
IV.3.1	Geração Distribuída	78
IV.3.2	Cogeração	82
IV.3	.2.1 Potencial da Cogeração a Gás Natural	84
CAPÍTULO	V Diversificação da Matriz Elétrica Brasileira	85
V.1 NO	O MODELO DO SETOR ELÉTRICO BRASILEIRO	87
V.2 PRO	OGRAMA DE INCENTIVO ÀS FONTES ALTERNATIVAS D	E
ENERGI	A ELÉTRICA - PROINFA	89

V.3 ESTIMATIVA DO AUMENTO DA DEMANDA ELÉTRICA	91
V.4 GERAÇÃO ELÉTRICA POR FONTE EÓLICA NO NORDESTE	E DO
BRASIL	93
V.4.1 Análise Econômica de Usinas Eólicas	96
V.5 COMPARAÇÃO DA UTILIZAÇÃO DE TERRA PARA FINS	
ENERGÉTICOS	100
V.5.1 Geração de Energia Solar Fotovoltaica	100
V.5.2 Geração de Eletricidade em Usina de Álcool	101
V.5.3 Geração de Energia a partir de uma plantação de Óleo de	
Girassol	107
V.5.4 Geração Eólica	108
V.5.5 Comparação dos Resultados	109
CAPÍTULO VI Base Matemática e Modelo para Comparação de For	ntes
Geradoras	111
VI.1 DESCRIÇÃO DO MÉTODO ANALÍTICO, HIPÓTESES E DAD	os
113	
VI.1.1 O Modelo de Portfólio	114
VI.1.1.1 Hipóteses Consideradas na Análise de Custos de	
Geração Elétrica	123
VI.2 DADOS DE ENTRADA PARA O CASO BRASILEIRO	129
VI.2.1 Custos de Geração Elétrica por tipo de tecnologia	131
VI.2.2 Estimativas dos Riscos	134
CAPÍTULO VII Resultados e Conclusões	142
VII.1CONCLUSÕES DA APLICAÇÃO DO MODELO	146
VII.2ANÁLISE DE SENSIBILIDADE DOS RESULTADOS	150
VII.2.1 Redução de Riscos	150
VII.2.2 Redução dos Coeficientes de Correlação	154
VII.2.3 Aumento do custo de penalização devido à emissão de C	O ₂
	157
VII.2.4 Avaliação do custo competitivo para a solar fotovoltaica	160
VII.3CONCLUSÕES FINAIS	164
VII.3.1 Sugestões para aprimoramento do modelo	164
VII.3.2 Sugestões para continuação do trabalho	166
Referências Bibliográficas	167

ANEX	(OS		173
A.1	SETO	R SUCRO ALCOOLEIRO NO BRASIL	173
	A.1.1	Processamento da cana-de-açúcar	177
	A.1.2	Produção, Preços e Mercados para o Etanol	181
	A.1.3	Novas Tecnologias – Etanol Celulósico	188
	A.1.4	Logística para escoamento da produção de etanol	190
	A.1.5	Fluxograma de Processo - geração máxima de energia	
	elétric	a em usina de álcool durante a safra	195
	A.1.6	Fluxograma de Processo - geração máxima de energia	
	elétric	a em usina de álcool durante a entressafra	196
A.2	CARA	TERÍSTICAS DAS PRINCIPAIS OLEAGINOSAS NO BR	RASIL
			197
	A.2.1	Soja	197
	A.2.2	Palma	197
	A.2.3	Mamona	198
	A.2.4	Girassol	200
A.3	BIODI	ESEL	201
	A.3.1	Produção, Preços e Mercados para Óleos Vegetais	208
	A.3.2	H-Bio	211
A.4	ECON	IOMIA DE HIDROGÊNIO	214
	A.4.1	Produção de Hidrogênio	217
	A.4.2	Barreiras para a Economia de Hidrogênio	225
	A.4.3	Motores Híbridos	229
A.5	ANÁL	ISE TERMODINÂMICA DA PILHA DE CÉLULAS A	
COI	MBUST	ÍVEL DA PLUG POWER	236
A.6	PLAN	ILHA EXCEL COM ROTINA PARA MAXIMIZAÇÃO DE	
RES	SULTAI	DOS	242

Lista de Figuras

Figura I-1 - Modelos de previsão do aumento de temperatura da superfíc	cie
da terra	18
Figura I-2 – Estimativas das reservas de petróleo segundo três cenários	19
Figura I-3 – Custos de produção de petróleo convencional versus óleos	
não-convencionais	20
Figura II-1 - Distribuição da demanda mundial de energia primária por	
fonte	24
Figura II-2 - Distribuição do consumo mundial de energia por finalidade	25
Figura II-3 – Distribuição da geração de eletricidade no mundo	26
Figura II-4 - Distribuição da oferta de energia por tipo de fonte no brasil	27
Figura II-5 – Ciclo do carbono	29
Figura II-6 – Divisão da população mundial em 2004	30
Figura II-7 – Previsão da divisão da população mundial em 2030	31
Figura II-8 - Divisão da demanda mundial de energia em 2004	31
Figura II-9 – Previsão da divisão da demanda mundial de energia em	
2030	32
Figura II-10 – Consumo per capita OCDE x países em desenvolvimento.	/
transição	33
Figura II-11 – Consumo de Energia/PIB OCDE x países em	
desenvolvimento/ transição	33
Figura III-1 – Radiação solar sobre a Terra	34
Figura III-2 – Comparação entre energia solar, reservas de combustíveis	S
fóssil e nuclear	35
Figura III-3 – Curvas corrente tensão características de módulo	
fotovoltaico	37
Figura III-4 – Capacidade acumulada instalada de módulos fotovoltaicos	}
	41
Figura III-5 – Complementaridade das fontes hídrica e eólica no nordeste	е
do Brasil	44
Figura III-6 – Potencial eólico no Brasil	45
Figura III-7 – Energia eólica no mundo	46
Figura III-8 – Principais fabricantes de aerogeradores – 2007	49

Figura III-9 – Rotas de produção de bioenergia5
Figura III-10 - Curva de aprendizado na produção de etanol no Brasil 54
Figura III-11 – Reação estequiométrica de transesterificação5
Figura III-12 – Produção mundial de óleos vegetais - milhões de tonelada:
6
Figura IV-1 – Esquema básico do reformador da Plug Power instalado na
PUC-Rio 6
Figura IV-2 – Esquema simplificado da pilha de células a combustível da
Plug Power6
Figura IV-3 – Diagrama esquemático de uma central de cogeração8
Figura V-1 – Resumo dos resultados dos leilões de energia elétrica8
Figura V-2 – PROINFA - potência contratada por região – MW9
Figura V-3 – Sistema elétrico interligado brasileiro92
Figura V-4 – Comparação de áreas necessárias para aproveitamento de
fontes renováveis de energia no Brasil9
Figura V-5 – Licenças concedidas pela ANEEL para instalação de
parques eólicos no Brasil99
Figura V-6 – Perda de área devido ao arranjo físico dos painéis10
Figura V-7 – Arranjo típico dos aerogeradores para usina no nordeste do
Estado do Rio de Janeiro
Figura VI-1 – Efeito da correlação entre os ativos nos retornos e riscos da
carteira11
Figura VI-2 – Efeito da adição de um ativo sem risco à carteira de
investimentos
Figura VI-3 – Fronteira eficiente para um portfólio composto por mais de
dois ativos12
Figura VII-1 - Custos x riscos de geração de eletricidade das tecnologias
fontes
Figura VII-2 – Fronteira eficiente. Retorno – risco das tecnologias / fontes
de geração14
Figura VII-3 – Participação das fontes nos portfólios da fronteira eficiente
14
Figura VII-4 – Fronteira eficiente no cenário estável

Figura VII-5 – Participação das fontes nos portfólios da fronteira eficiente	è
no cenário estável15	53
Figura VII-6 – Fronteira eficiente, reduzindo-se os coeficientes de	
correlação a 0,115	55
Figura VII-7 – Participação das fontes nos portfólios da fronteira eficiente	,,
reduzindo-se os coeficientes de correlação a 0,115	56
Figura VII-8 – Fronteira eficiente, dobrando-se o custo devido à emissão	1
de CO ₂ 15	58
Figura VII-9 – Participação das fontes nos portfólios da fronteira eficiente	۶,
dobrando-se o custo devido à emissão de CO ₂ 15	59
Figura VII-10 – Fronteira eficiente, incluído solar fotovoltaica a	
US\$ 2000/kW16	62
Figura VII-11 – Participação das fontes nos portfólios da fronteira eficien	ıte
incluindo solar fotovoltaica a US\$ 2000/kW16	63
Figura A-1– Maiores produtores mundiais de etanol - 200518	31
Figura A-2 – Faixas de custo para produção de etanol - 200618	32
Figura A-3 – Energia renovável útil entregue / energia fóssil total	
consumida no processo18	82
Figura A-4 – Venda de veículos no Brasil – 1980 a 200518	33
Figura A-5 – Produção brasileira de etanol18	34
Figura A-6- Distribuição da produção de etanol por região – safra 07/08	
18	84
Figura A-7 – Participação do etanol anidro na produção total18	35
Figura A-8 – Preços de etanol anidro e hidratado no Estado de São Paul	0
sem impostos e frete	85
Figura A-9 – Exportações brasileiras de etanol18	86
Figura A-10 – Programa corredor de exportação de etanol da	
TRANSPETRO19	94
Figura A-11 – Desmatamento anual na Amazônia Legal20)4
Figura A-12 – Áreas de soja e mamona necessárias para suprir o atual	
mercado B520	05
Figura A-13 - Evolução da produção mundial de biodiesel - mil m³ /ano20	ე6
Figura A-14 – Preços de glicerina pura e bruta20	ე6
Figura Δ-15 – Preco médio de óleos vegetais	na

Figura A-16 - Evolução da qualidade do diesel	213
Figura A-17 – Distribuição da produção de hidrogênio por fonte	217
Figura A-18 – Esquema de um carro híbrido da Mercedes-Benz	232

Lista de Tabelas

Tabela II-1 – FC médios anuais no mundo por tipo de geração elétrica e	em
2004	.26
Tabela II-2 – FC médios anuais no brasil por tipo de geração elétrica	.27
Tabela II-3 – Área alagada por potência instalada em UHE – Usinas	
Hidrelétricas – no Brasil	.28
Tabela III-1 – Tecnologias de aerogeradores - tendências observadas	.48
Tabela III-2 – Alternativas de geração em usinas de cana-de-açúcar	.55
Tabela III-3 – Rendimentos para produção de óleo das principais	
oleaginosas	.58
Tabela III-4 – Produção brasileira de óleos vegetais- 2004	.59
Tabela III-5 – Produção mundial de óleos vegetais - 2004	.59
Tabela III-6 - Produtividade agrícola de oleaginosas e milho x cana-de-	
açúcar	.60
Tabela IV-1 – Custo comparativo de geração elétrica na Comunidade	
Européia – em EUR/MWh e taxa de desconto de 10% aa	.77
Tabela IV-2 – Custo para instalação de usinas nucleares no mundo	.78
Tabela IV-3 – Fatores para qualificação de uma central com cogeração	
segundo a ANEEL	.83
Tabela IV-4 – Potencial de cogeração do Estado de São Paulo	.84
Tabela V-1 – Fatores condicionantes para a viabilização de fonte primá	ria
para geração de energia elétrica no Brasil	.86
Tabela V-2 – Resultados dos leilões de energia velha no novo modelo d	ob
setor elétrico	.88
Tabela V-3 - Principais tópicos do PROINFA	.90
Tabela V-4 – Contratações do PROINFA	.90
Tabela V-5 – Geração elétrica no Brasil em 2030 x 2005 - GW médios .	.91
Tabela V-6 – Perdas no sistema elétrico brasileiro – TWh	.92
Tabela V-7 – Área necessária para gerar 100% da energia elétrica no	
Brasil com usinas eólicas	.93
Tabela V-8 – Cargas elétricas do nordeste – MW médio	.95
Tabela V-9 – Importação de energia pelo nordeste - MW médio	.95
Tabela V-10 – Geração termelétrica no nordeste - MW médio	.95

Tabela V-11 – Simulação da penetração de 3300 MW Instalados de	
energia eólica no nordeste – MW médio	96
Tabela V-12 - Retorno do investimento para usinas eólicas do PROIN	IFA
	97
Tabela V-13 - Custo da energia para investimento segundo padrões	
europeus	98
Tabela V-14 - Influência dos ventos e investimentos no custo de gera	ção
de energia - R\$/MWh	98
Tabela V-15 – Radiação solar média mensal na região NE do Estado	do
Rio de Janeiro	100
Tabela V-16 - Dados principais da usina	103
Tabela V-17 - Geração excedente de energia elétrica com bagaço e p	oalha
– safra	104
Tabela V-18 - Geração excedente de energia elétrica com bagaço e p	oalha
– entressafra	104
Tabela V-19 – Comparação do projeto básico da usina e alternativas	106
Tabela V-20 – Um ha plantado de cana-de-açúcar produz por safra	107
Tabela V-21 – Um ha de plantação de girassol produz por ano	107
Tabela V-22 – Comparação do aproveitamento energético de um hec	tare
de terra no nordeste do Estado do Rio de Janeiro	109
Tabela VI-1 - Tecnologias para geração de energia em foco	131
Tabela VI-2 - Alocação de custos variáveis e fixos para O&M	132
Tabela VI-3 - Emissão de gases de efeito estufa por energia gerada	132
Tabela VI-4 - Dados de custos e desempenho - 2008	132
Tabela VI-5 - Dados de custos e desempenho aplicados no modelo p	or
tipo de tecnologia	133
Tabela VI-6 - Participações dos custos de geração de energia elétrica	a por
tecnologia	133
Tabela VI-7 - Custos históricos de combustível 1997-2007 e MDL 200)5-
2007 em US\$	135
Tabela VI-8 - Custos históricos de combustível 1997-2007 e MDL 200)5-
2007 em US\$ de 2007	135
Tabela VI-9 - Taxas de variações anuais 1998-2007	136

Tabela VI-10 - Coeficientes de correlação entre as fontes primárias de	
energia	136
Tabela VI-11 – Custos médios de operação de usinas elétricas	
particulares americanas – US\$/MWh	138
Tabela VI-12 – Variações anuais com médias e desvios dos últimos de	Z
anos	138
Tabela VI-13 - Coeficientes de correlação para custos de O&M de	
geração elétrica por tipo de usina no mercado americano	139
Tabela VI-14 - Estimativas de desvios padrões dos riscos para o Brasil	140
Tabela VI-15 - Coeficientes de correlação utilizados no Modelo de	
Portfólio	141
Tabela VII-1 - Geração de energia elétrica no Brasil em 2005 e previsã	0
para 2030	146
Tabela VII-2 – Retorno- risco da matriz EPE x portfólios da fronteira	
eficiente	147
Tabela VII-3 – Retorno- risco das tecnologias / fontes consideradas na	
análise	147
Tabela VII-4 - Potenciais e limitações das fontes primárias de energia .	148
Tabela VII-5 - Estimativas de desvios-padrões dos riscos considerando)
cenário estável	150
Tabela VII-6 – Retorno- risco da matriz EPE x portfólios da fronteira	
eficiente em cenário estável	151
Tabela VII-7 – Sensibilidade ao cenário estável dos resultados do mod	elo
para o portfólio H65	151
Tabela VII-8 – Redução dos coeficientes de correlação utilizados no	
Modelo de Portfólio	154
Tabela VII-9 – Retorno- risco da matriz EPE x portfólios da fronteira	
eficiente, reduzindo-se os coeficientes de correlação a 0,1	154
Tabela VII-10 – Retorno- risco da matriz EPE x portfólios da fronteira	
eficiente, dobrando-se o custo devido à emissão de CO ₂	157
Tabela VII-11 - Estimativas de custos e desvios-padrões para solar	
fotovoltaica	161
Tabela VII-12 – Retorno- risco da matriz EPE x portfólios da fronteira	
eficiente, incluído solar fotovoltaica a US\$ 2000/kW	161

Tabela A-1-Periodos de satra e entressatra no nordeste e sudeste	175
Tabela A-2 – Adubos, corretivos de solo e controle de pragas - kg/ he	ctare
	176
Tabela A-3 – Vantagens e desvantagens do uso da palha na cultura d	la
cana-de-açúcar	176
Tabela A-4 – Usinas na safra 2006-2007, por estado e tipo	178
Tabela A-5 – Políticas de mistura do etanol na gasolina no século XX	179
Tabela A-6 – Países com experiência na utilização de etanol na gaso	lina
com percentuais das misturas	187
Tabela A-7 – Estimativa de demanda potencial de etanol para adição	à
gasolina	187
Tabela A-8 - Terminais marítimos e fluviais da Petrobras para etanol.	192
Tabela A-9 - Terminais terrestres da Petrobras para etanol	
Tabela A-10 - Centros coletores de etanol	193
Tabela A-11 – Projetos para escoamento da produção de etanol do	
Centro-Sul	194
Tabela A-12 – Disponibilidade de matéria-prima por safra – mil t	197
Tabela A-13 – Problemas observados na utilização de óleos vegetais	in
natura em motores	201
Tabela A-14 – Biodiesel - ASTM D-6751/2002 x diesel mineral	202
Tabela A-15 – Uso da terra no Brasil	204
Tabela A-16 – Volumes estimados de biodiesel até 2010	208
Tabela A-17 – Impostos federais para biodiesel – R\$/ tonelada	209
Tabela A-18 – Preço do biodiesel em R\$/t x preço do óleo diesel	209
Tabela A-19 – H-Bio x biodiesel x diesel mineral processado no HDT	211
Tabela A-20 – Comparação veículo híbrido x convencional	234